
MicroSim: Modeling the Swedish Population

Lisa Brouwers, Martin Camitz, Baki Cakici, Kalle Mäkilä, Paul Saretok

Abstract

This article presents a unique, large-scale and spatially explicit
microsimulation model that uses official anonymized register data collected
from all individuals living in Sweden. Individuals are connected to households
and workplaces and represent crucial links in the Swedish social contact
network. This enables significant policy experiments in the domain of
epidemic outbreaks. Development of the model started in 2004 at the
Swedish Institute for Infectious Disease Control (SMI) in Solna, Sweden with
the goal of creating a tool for testing the effects of intervention policies. These
interventions include mass vaccination, targeted vaccination, isolation and
social distancing. The model was initially designed for simulating smallpox
outbreaks. In 2006, it was modified to support simulations of pandemic
influenza. All nine millions members of the Swedish population are
represented in the model. This article is a technical description of the
simulation model; the input data, the simulation engine and the basic object
types.

Introduction

For policy purposes, understanding the behaviour of infectious diseases within a
given population is vital. Traditionally SIR-models have been used to aid the
understanding of these processes. SIR (Susceptible-Infected-Recovered) is a
compartmental model in which differential equations govern the dynamic flow
between three compartments and no contact structure is assumed. In an SIR-
type model, the population is split into three different groups and the majority of
the population is placed in the susceptible compartment. As the experiment
progresses, individuals are randomly picked and moved between compartments
according to the properties of the simulated disease. This lack of contact
structure is referred to as random mixing. The individuals are considered to be
exact copies of each other and no defining characteristics such as age, sex or
social context are taken into consideration. All individuals are assumed to have
the same number of contacts and are at equal risk of infection.

It has been demonstrated that simplified assumptions about contact structure
can be sufficient for creating accurate transmission models (Andersson and May
1992, Diekmann and Heesterbeek 2000). This is especially true for highly
infectious diseases such as measles. For diseases that are less infectious such as
STDs or SARS, however, simplified compartmental models provide inadequate
representations because contacts between susceptible and infectious persons are
not random (Morris 1997, Liljeros et al. 2001, Dezsı and Barabási 2002, Meyers
2007). Social structure, geography and behaviour are all important factors that
influence the size and the speed of an outbreak. If individuals are represented
explicitly in the model, the effect of contact structure can be observed and the

change in individual behaviour due to policy or outbreak awareness can be
simulated. Finally, by representing the geography explicitly, spatial concerns,
constraints and their influence on the outbreak can be observed in silico.

Input Data

All inhabitants of Sweden are assigned a 10-digit national registration number
that serves as a unique personal identifier. The identifier is used in most
administrative registries and provides an opportunity to unambiguously link
information from different sources. The MicroSim model uses registry data
obtained from Statistics Sweden (SCB) to generate the simulated population. The
data is processed in two stages before it is parsed by MicroSim:

1. Data from three administrative registers is compiled into one base file by
SCB.

2. The base file is transformed and modified into the format required for
MicroSim. Three MicroSim-specific files (popfile, workplacefile, xyfile) are
created.

Creating the Base File

The data from three administrative registers is linked by the unique personal
identifier. This linking and the substitution of an anonymized personal identifier
instead of the real one is performed by SCB (Ethical approval identifier
04/903/2). The three registers used in this process are:

1. National population register
2. Employment register
3. Geography database

National Population Register (2002)

• IndID: Unique individual identifier.

• BirthY: Year of birth.

• Sex: 1 = Male, 2 = Female.

• FamType: 1 = Married/cohabiting with children, 2 = Married/cohabiting
without children, 3 = Single with children, 4 = Single without children, 5 =
Other.

• FamID: Family identifier.

• WorkplaceID: See the Employment Register section.

• SchoolID: Unique school identifier.

• FatherID: IndID of the individual's father.

• MotherID: IndID of the individual's mother.

Employment Register (2002)

• CompanyID: Unique company identifier.

• WorkplaceID: Unique workplace identifier. A workplace identifier uniquely
identifies the workplace and the company.

• WPbranchcode: Branch code (1 to 1054).

• WPmun: The municipality of the workplace (1 to 290).

• WPType: 1 = Daycare center, 2 = School (ages 6 - 16), 3 = College (ages
16 - 19), 4 = Other school, 5 =Workplace.

• SchoolID: Unique school identifier.

• SchoolType: The highest level of education for the school (D = Daycare, L =
Ages 6 - 9, M = Ages 10 - 12, H = Ages 13 – 15, HSK = College/University).

Geographic database (2003)

All objects in the population register and the employment register (households
and workplaces) are aggregated into 100-meter squares. The eastern and
northern coordinates are combined into one number where the first seven digits
constitute the eastern coordinate and the following seven digits constitute the
northern coordinate. For instance, the combined coordinates 15943006571200

represent East 1594300 and North 6571200. These coordinates mark the lower

left corner of the 100-meter square.

• DwSquare: Family household coordinates.

• WPSquare: Workplace coordinates.

• SchoolSquare: School coordinates.

The compiled data file from SCB

The base file from SCB contains one line per individual (see Table 1).

IndId BirthY Sex
Fam
Type

Dw
Square

WP
Square

School
Square

FamID
Workpl.
ID

WPbranch
code

WP
mun

Company
ID

School
ID

School
Type

FatherID MotherID

2544587 1978 1 3 1594… 2543583 2555897 2543583

2035042 1978 2 1 1623… 1335… 2018599 999992 279737 022 HSK 2018599 2020201

1712109 1978 1 4 1621… 1628… 1712109 200415 45230 1283 387818 1687754 1689503

Table 1. Three SCB base file entries.

Creating the MicroSim files

The popfile is a binary file containing following variables: IndID, Sex, Age,
FamID, DwellingSquare, WorkplaceID, BranchCode, and IndMunicipality. The
workplace file contains the following information for each workplace:
WorkplaceID, WPSquare, NoOfEmployees, Branch-code and Wpmun. In the
internal representation the occupied grid squares are marked. The xy-file links
these xy-indexes and the corresponding geographic coordinates.

Data structure

Objects

MicroSim uses two main object types to represent persons and houses. The
house object is used to represents workplaces, schools, hospitals and homes.
Each house or person object is associated with an executable event object called
life_of_house or life_of_person and placed on the time line. The event and the
corresponding person or house are implemented as separate objects to save
space, since not all persons need to have an event object. The event object of a
person takes care of day-to-day movement between home and workplace, to an

emergency room (ER) or to a department of infectious disease (DID) if
necessary. The event object of a house is used for disease transmission within
the represented place by iterating through its member list.

All objects are stored in a fixed-size buffer in order to avoid the overhead of
using the C++ new operator. The person and house objects are marked with a
unique integer identifier which also contains information about the object type.
The identifier is designed to quickly separate schools and kindergartens from
hospitals, ERs and other care units.

Lists of members

Every person is linked to a household and most are additionally linked to a
workplace or a school. Information about the structure of this network is read
from the three data files (pop, workplace, schoolkids) as described in the Data
section. The house objects maintain arrays of their members. Each house
member array contains up to four person objects which is sufficient for most
homes and workplaces. When memory for additional members is required,
chunks of 20 slots are allocated from a global fixed size person-buffer. These
chunks can be allocated and released dynamically, for example, when modeling
daily visits to ERs.

The person object stores the properties of the represented person’s age and sex
as well essential run time variables such as time of infection, the level of
vaccination success and the current location.

The house object contains a standard code identifying the type of workplace, a
region identifier and a geographic grid index. Certain flags enable the house to
be removed from the timeline when there is no risk for its members to become
infected. Extra data for care-type houses is contained in a separate structure
that is associated with the house object using a hash-table.

Simulation engine

The MicroSim simulation engine is event driven with discrete time steps along a
timeline. The timeline array is composed of small event notice structures each
representing a point in time. In the current implementation the time step is one
hour. Each event notice in the timeline contains an index into the buffer where
the actual executable event objects are stored.

Event notices scheduled for operation are stored in an array. A one-directional
linked list is maintained for each timeline array slot, enabling the simulation
engine to find the next scheduled event notice using a next-index. When a
process is deactivated, it is not removed from the timeline but marked with a
flag to prevent it from being executed. This avoids the overhead of removing the
object and reordering the list. C-style pointers are not used in these sections of
the source code in order to make allocation and garbage collection more efficient.

Geography

For the purposes of our simulation, the entire resolution of the coordinate system
is not required. By removing the large offset from origin and two trailing zeros
(due to the 100-meter step size), the coordinate pair can be reduced to 32 bits.
However, compared to the number of available 100-meter squares, only a very
low number (~900000) are occupied, with most squares containing several

homes and workplaces. A more efficient solution is numbering the grid squares
and allowing the objects that require location information to store this xy-index.
The link between the index and the actual coordinate is kept in an array which is
read from a file when the simulation engine is initialized. Using this method, the
xy-index can be stored in 20 bits and individuals can be assigned to care units
(ERs and DIDs) more efficiently. An array linking the grid square index to the
care units is used to determine the closest care unit.

Figure 1: Population density map of Sweden.

Storage/Memory

Microsimulation of 9 million individuals, their homes and workplaces is complex
and memory intensive. Therefore, the simulation engine has been optimized to a
high degree. This is achieved in most cases by bypassing the compiler’s general
purpose memory management and instead using a small set of customized
memory management functions. In comparison, the built-in new function is slow
and creates an extra overhead on the allocated objects, making them much
larger than they need to be.

For each of the main object types, a sufficiently large buffer is allocated to store
the objects. The objects are initialized by using the custom memory allocation
function. Since they are accessed throughout the simulation, no garbage
collection is required. The only module where the new operator is used is the
alternative travel module which allocates several dynamic objects to a small
portion of the population.

Simulation

Simulation proceeds by iterating through the timeline array. At every step
(corresponding to one hour), the list of events scheduled for that step are
executed consecutively. After an event is run, its event notice is removed from
the list to be reused for another event. All events for person objects are executed
one step prior to those for house objects to ensure that persons are in the right
position before disease transmission takes place.

Disease Transmission

The run method of a person object is in charge of day to day movement which is
performed every day at 8 am and 4 pm. Depending on the time of day and
current disease level of the person, there is a certain probability of the person
being a) at home; b) at work, school or day care; c) at an ER in the vicinity; or
d) at an infectious disease department of a nearby hospital. This is done by
setting a pointer to the house representing the current location (transmission
site). The pointer is checked when disease transmission takes place one hour
later. Allocation to ERs and hospitals is done by calculating the Euclidean
distance and searching for the closest ER or hospital. In most cases a clinic is
already assigned to the particular grid square previously because the bulk of
clinic-grid square association is read from a file at initialization.

Disease transmission is performed twice daily at 9 am and 5 pm. The house
member lists and patient lists are iterated to calculate the combined
infectiousness of their members. In the case of larger workplaces, the member
lists are further divided into departments. After the combined infectiousness is
determined, the list members are exposed and infected according to infection
risk.

Optimization

The most significant performance increase is gained by keeping the number of
active processes to a minimum. Only the infected individuals or those at risk of
being infected need to be active on the timeline. The moment a person is
infected, the house and workplace associated with that person are activated and
placed on the timeline. Persons and houses are deactivated when they are no
longer at risk i.e. immune or deceased. Houses with zero infection risk for a
number of consecutive days are also deactivated. All objects are analysed every
five days and deactivated when possible. These operations ensure that a
minimum number of processes are active at any given moment during the
simulations.

Output

During a simulation whenever an infection takes place a log entry is created.
Each log entry contains simulation seeds, infection time, infection place type,
infection place coordinates and infection risk. In addition, every entry also
includes the id, home, region, age, sex, and the department for both the infector
and the infected. The log files are stored as tab-separated plaintext files where
each entry is terminated by a line break.

Discussion

Explicit representation of social connections creates a population network that is
suitable for realistic simulations of infectious disease outbreaks in Sweden. Most
microsimulation models use either sample data or a fictive population, whereas
MicroSim uses real register data. To our knowledge, MicroSim is the only large-
scale population network model built on real register data. The model is not
restricted to simulations of infectious disease, but could be used for all policy
investigations where analysis of the distributional (social and/or geographical)
effects is a priority.

References

Andersson, R. M. & May, R. M. (1992). Infectious Diseases of Humans: Dynamics
and Control, Oxford Univ Press, Oxford.

Dezsı, Z. & Barabási, A.-L. (2002). “Halting viruses in scale-free networks”,
Phys. Rev. E 65(5).

Diekmann, O. & Heesterbeek, J. (2002). Mathematical Epidemiology of Infectious
Diseases: Model building, analysis and interpretation, John Wiley and Sons,
Chichester.

Liljeros, F., Edling, C. R., Amaral, L. A. N. & Aberg, Y. (2001). ”The web of
human sexual contacts”, Nature 411, 907-908.

Meyers, L. A. (2007). “Contact network epidemiology: bond percolation applied
to infectious disease prediction and control”, Bull. Amer. Math. Soc. 44, 63-86.

Morris, M. (1997). “Sexual networks and HIV”, AIDS 11, 209-216.

Appendix: Object Attributes and Methods

Person Object
Attributes
actor_id, age, deceased, department, disease_profile, home, immune, life, sex,
time_of_infection, transmission_site, workplace

Methods
choose_place, connect, decide_latent_period, disease_level, expose,
host_state, infected, infectious,init, set_host_recovered

House Object
Attributes

actor_id, house_type, isInfected, life, members, region, sni_kod, xy

Methods
Add, capacity, compute_risk, get_occupancy, hospital_scan,
increment_occupancy, infect_persons_callback_one, init, init_akutmott,
init_home, init_inf_klinik, init_workplace, is_full, member_count,
member_scan, print, transmit, wakeup, visit_akutmott, visit_inf_klinik ,
visitor_scan

Event object (life_of_house/life_of_person)
Attributes
CURRENT_PROCESS_ID, exec_state, houses_currently_active /
persons_currently_active, MAX_PROCESS_ID,
MAX_PROCESS_ID_WITHIN_BUFFER, myself, notice, process_id, see_events,
self, to_be_passivated

Methods
Activate, allocate_array, cancel, delete_array, hold process, idle, init,
maxProcessId, passivate process, passivateDelayed, passivating, run, set_size,
terminate

Time_axis object
Attributes
cleanup_count, cleanup_limit, current, events, max_process_id, now,
remove_count, running_limit

Methods
add_event, add_event_after, add_event_before, add_event_now,
find_next_event, Get_Time, print_all_events, remove_event_notice,
remove_first, run, run_next_event, set_current, set_run_limit, set_size,
time_axis

